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Abstract

Hypoxia-inducible factor (HIF) is amaster regulator of cellular
responses to oxygen deprival with a critical role in mediating the
angiogenic switch in solid tumors. Differential expression of the
HIF subunits HIF1a and HIF2a occurs in many human tumor
types, suggesting selective implications to biologic context. For
example, high expression ofHIF2a that occurs in neuroblastoma
is associated with stem cell–like features, disseminated disease,
and poor clinical outcomes, suggesting pivotal significance for
HIF2 control in neuroblastoma biology. In this study, we provide
novel insights into how HIF2a expression is transcriptionally
controlled by hypoxia and how this control is abrogated by
inhibition of insulin-like growth factor-1R/INSR-driven phos-

phoinositide 3-kinase (PI3K) signaling. Reducing PI3K activity
was sufficient to decrease HIF2a mRNA and protein expression
in a manner with smaller and less vascularized tumors in vivo.
PI3K-regulatedHIF2AmRNA expression was independent of Akt
or mTORC1 signaling but relied upon mTORC2 signaling.
HIF2A mRNA was induced by hypoxia in neuroblastoma cells
isolated from metastatic patient–derived tumor xenografts,
where HIF2A levels could be reduced by treatment with PI3K
and mTORC2 inhibitors. Our results suggest that targeting PI3K
and mTORC2 in aggressive neuroblastomas with an immature
phenotype may improve therapeutic efficacy. Cancer Res; 75(21);
4617–28. �2015 AACR.

Introduction
Mammalian cells adapt to hypoxia by activating a transcrip-

tional program orchestrated by the heterodimeric hypoxia-induc-
ible factors (HIF) 1 and 2 via stabilization of their oxygen-
sensitive HIFa subunits (1, 2). Tumor hypoxia and HIF1a and
HIF2a protein expression are associated with aggressive disease,
metastasis, resistance to therapy, and thus poor clinical outcome
for patients with various cancers (3–9). HIF1a and HIF2a share
high sequence homology, but it is becoming increasingly evident
that HIF1a and HIF2a have differential spatial and temporal
regulation in response to hypoxia in human tumors and devel-
oping tissues (4, 5, 7, 8, 10–12).

Neuroblastoma is a childhood tumor of the developing sym-
pathetic nervous system (SNS).We have previously demonstrated
that HIF2a is expressed in hypoxic areas and within the perivas-
cular niche, where it promotes a local pseudo-hypoxic tumor

phenotype (4, 13). In addition, HIF2a is a marker of immature,
neural crest-like neuroblastoma cells in tumor specimens (13),
and high HIF2a protein expression is associated with aggressive
disease and poor clinical outcome in neuroblastoma (4, 8). We
recently showed that HIF2a and insulin-like growth factor (IGF)-
II are coexpressed in SNS ganglia and paraganglia during distinct
periods of normal human embryogenesis and fetal development.
Expression of HIF2A and IGF2 thereto correlate in clinical neu-
roblastoma specimens, and IGFII regulates hypoxic expression of
HIF2A (12).

IGFII is a major growth factor during fetal development,
whereas the related IGFI protein primarily regulates growth dur-
ing adulthood (14, 15). IGF receptor binding initiates signaling
mainly through the phosphoinositide 3-kinase (PI3K) pathway
(reviewed in ref. 16), which in turn regulates several important
cancer hallmarks, including growth, survival, and differentiation
(reviewed in ref. 17). HIF1a translation can be regulated by
growth factor–activated PI3K and mammalian target of rapamy-
cin (mTOR) signaling (17–21). The mTOR kinase forms a com-
plex with the cofactors and depending onwhether it binds Raptor
or Rictor, it forms mTORC1 or mTORC2, respectively. The PI3K/
mTOR pathways are hence putative candidatemediators of IGFII-
driven HIF expression and activity in neuroblastoma.

Here we show that hypoxia-induced transcription of HIF2A in
neuroblastoma cell lines and cells frompatient-derived xenografts
(PDX) is dependent on PI3K signaling mediated by ligand-stim-
ulated IGF1R or INSR; however, the effects appear to be inde-
pendent of downstream Akt andmTORC1 activity. Abrogation of
PI3K severely diminishes hypoxic HIF2a and HIF2 target gene,
including VEGF-A, expression, and results in smaller and less
vascularized tumors in vivo. We further show that transcription of
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HIF2A is strongly dependent on mTORC2, and that PI3K and
mTORC2arepotential therapeutic targets inHIF2a-driven aggres-
sive neuroblastomas.

Materials and Methods
Cells and reagents

The human neuroblastoma cell lines SK-N-BE(2)c, SH-SY5Y,
SH-EP, IMR-32, KCN-69n (kind gifts 1979 and following years
from Drs. June Biedler, Memorial Sloan Kettering Cancer Center
and Robert Ross, Fordham University, Bronx, NY), and LA-N-5
(kind gift 1979 from Dr. Robert Seeger, Children's Hospital, Los
Angeles, CA) were cultured in minimal essential or RPMI-1640
(IMR-32) medium. Renal cell carcinoma (RCC)–derived 786-O
(ATCC) or RCC-4 (empty vector or þVHL; Sigma Aldrich) cells
(used directly after purchase) were cultured in Dulbecco's Mod-
ified Eagle Medium. Geniticin (0.5 mg/mL; Gibco) was added to
RCC-4 growth medium for selection. All medium was supple-
mented with fetal bovine serum and antibiotics. As part of our
laboratory routines, neuroblastoma cell lines in usewere regularly
replaced on a tri-monthly basis, and screened for presence of
mycoplasma infections. Morphology, growth characteristics, and
critical gene expression patterns (e.g., MYCN, TH, CHGA) were
continuously monitored by light microscopy, qRT-PCR, and
Western blot. Hypoxia was generated in an InvivO2 hypoxia
workstation (Ruskinn Technologies) or a Whitley H35 Hypox-
ystation (Don Whitley Scientific). Cells were treated with rapa-
mycin (1 mmol/L; Sigma Aldrich), LY294002 (50 mmol/L; Sigma
Aldrich), GDC-0941 (1 mmol/L; Selleckchem), PI-103 (1 mmol/L;
Selleckchem), NVP-AEW540 (1 mmol/L; Selleckchem), HNMPA-
(AM)3 (1 mg/mL; Enzo Life Sciences), GDC-0068 (1 mmol/L,
Selleckchem); or PP242 (1 mmol/L, Selleckchem).

Western blotting
Cells were lysed in RIPA supplemented with complete protease

inhibitor and phosSTOP. Proteins were separated by SDS-PAGE
and transferred to polyvinylidene difluoride or Hybond-C-Extra
nitrocellulose membranes. Antibodies are listed in Supplemen-
tary Table S1.

Quantitative real-time PCR
Total RNAwas extracted eithermanually using the RNeasyMini

Kit (Qiagen) or automatically using the Arrow with Arrow RNA
(Tissue Kit-DNA Free) Kit (DiaSorin). cDNA synthesis and qRT-
PCR was performed as described previously (12). Three reference
genes were used to normalize gene-of-interest expression. Primer
sequences are listed in Supplementary Table S2.

ELISA
ELISA plates (96-well; Peprotech) were coated with capture

antibody (0.5 mg/mL). Samples were incubated with detection
antibody (0.25 mg/mL) followed by an avidin–horseradish per-
oxidase conjugate (1:2,000). ABTS liquid substrate was used to
monitor color development at 405 nm with wavelength correc-
tion set at 650 nm.

Transfections
Transfections were performed in serum- and penicillin-free

OPTI-MEM medium (Gibco), using siRNA targeting IGF1R,
IGF2R, INSR, AKT1-3, RAPTOR, or a nontargeting control siRNA
for 6 hours at 21% O2. Following overnight recovery, cells were

transferred to hypoxia for indicated time points. Oligo concen-
trations used were 5 to 50 nmol/L with Lipofectamine 2000
(Invitrogen) as transfection reagent. RNAi oligo sequences, spec-
ified concentrations, and product details are listed in Supplemen-
tary Table S3.

SIN1 overexpression
SK-N-BE(2)c cells (2.5 � 105) were transfected with 5 mg SIN1

full-length vector (pCMV6-MAPKAP1; RC211745, Origene) in 2
mL OPTI-MEMmedium (Gibco) using Lipofectamine 3000 for 5
to 6 hours according to the manufacturer's recommendations.
Cells were allowed to recover overnight before incubation at 21%
O2 for 48 hours.

Animal procedures and immunohistochemistry
Female athymic mice (NMRI-Nu/Nu strain; Taconic) were

housed in a controlled environment and the regional ethics
committee for animal research approved all procedures (approval
no. M69/11). SK-N-BE(2)c cells were subjected to DMSO or
LY294002 treatment for 4 hours at 21% O2 before cells (5 �
106) were collected in 100 mL Matrigel:PBS (2,3:1) and injected
into the right flank. Tumors (n¼ 7 in each group) were measured
[V¼ (p� l� s2)/6 mm3, where l is the long side and s is the short
side] and weighed 5 days after injection before being fixed in 4%
paraformaldehyde and embedded in paraffin. After antigen
retrieval using PT Link (Dako), staining of sections (4 mm) for
rat anti-mouse CD34 (Santa Cruz Biotechnology, sc-18917) was
performed using AutostainerPlus (Dako).

Gene expression microarray analyses
SK-N-BE(2)c cells were treatedwithDMSOor PP242 for 24, 48,

or 72 hours at 1% oxygen. Untreated SK-N-BE(2)c cells harvested
at T ¼ 0 hour were used as a normoxic control. Total RNA from
four independent repeats was extracted manually using the
RNeasy Mini Kit (Qiagen) according to the manufacturer's
instructions. RNA quality was assessed using an Agilent 2100
Bioanalyzer (Agilent). RNA samples were hybridized to Human
HT-12 v4.0 Expression BeadChips (Illumina Inc.). Mean spot
intensities were background corrected and quantile normalized
using BioArray Software Environment (BASE; ref. 22). Normal-
ized data were log2 transformed, and probes were merged on
official gene symbols (mean expression) using R statistical lan-
guage (version 3.1.1). The hypoxia gene expression signature
score was calculated as the mean expression of 44 prototypical
hypoxic response genes as described by Li and colleagues (23).
Gene set enrichment analysis (GSEA; ref. 24) was performed on a
ranked list of all genes based on differential expression between
DMSO and PP242 treatments after 72 hours using the c2.all.v4.0
curated gene set collection (25). Differential expression was
determined by significance of microarrays (SAM) analysis per-
formed in R using the samr package (version 2.0). The data
discussed in this article have been deposited in NCBI's Gene
Expression Omnibus and are accessible through GEO Series
accession number GSE69833 (26).

PDX model
The neuroblastoma PDX model, FDG-PET scanning proce-

dures, and in vitro culturing of PDX-derived cells are described
in ref. 27. Dissociated cells were treated with LY294002 or PP242
at T¼0 and T¼ 24hours and cultured at 21%or 1%oxygen levels
for 48 hours in total.
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Statistical analyses
All values are reported as mean � SEM from at least three

independent experiments unless otherwise stated. The two-sided
Student unpaired t test was used for statistical analyses, and three
levels of significance were used: �, P < 0.05; ��, P < 0.01; ���, P <
0.001. A publicly available dataset containing 88 neuroblastomas
(R2: microarray analysis and visualization platform; ref. 28) was
used to analyze INSR, IGF1R, and IGF2R expression.

Results
HIF2A expression depends on IGF1R– and INSR-mediated
signaling

Neuroblastoma cells respond to hypoxia by differentially
expressing the oxygen-sensitive HIFa subunits at protein level,
with continuous accumulation ofHIF2a protein over time (4). As
shown here, HIF2A mRNA expression mimicked HIF2a protein
expression patterns and increased with prolonged hypoxia (here
definedas 1%oxygen; Fig. 1A). Becausewehavepreviously shown
that IGFII regulates HIF2A expression (12), we analyzed expres-
sion of the receptors known to bind IGFII: IGF1R, IGF2R, and
INSR. All three genes were expressed in neuroblastoma specimens
and in SK-N-BE(2)c andKCN-69nneuroblastoma cells (Fig. 1C–F;
Supplementary Fig. S1AandS1B). IGF2R encodes a protein devoid

of an extended intracellular tail, and the receptor is considered to
lack signal transduction capacity. Consequently, downregulation
of IGF2R expression did not affect HIF2A levels (Supplementary
Fig. S1C and S1D).

RNAi-mediated downregulation of IGF1R and INSR resulted in
a substantial reduction in HIF2A expression (Fig. 2A–D). In
addition, treatment withNVP-AEW541 orHNMPA-(AM)3, which
inhibit IGF1R and INSR kinase activities, respectively, nearly
completely ablated hypoxia-induced transcription of HIF2A
(Fig. 2E and F). The effects on HIF1AmRNA expression were less
coherent, depending on oxygen concentrations and oligo target
sequence (Fig. 2A–D and G–H). We conclude that IGF1R and
INSR signaling have no unanimous effect onHIF1A transcription
in neuroblastoma cells.

PI3K differentially regulates HIF1a and HIF2a protein
expression

The PTEN–PI3K–AKT–mTOR pathway is implicated both in
HIF translation (refs. 18, 20 and reviewed in refs. 17, 19) and in
transducing signals evoked by IGF1R and INSR (reviewed in
ref. 16). PI3K signaling is not generally hyperactivated by PTEN
or PIK3CA deletions or mutations in neuroblastoma (29, 30),
and, as shown in Supplementary Fig. S2A, PTEN protein was
expressed in all the neuroblastoma cell lines studied. Hypoxia
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Figure 1.
Neuroblastoma cells express IGF1R
and INSR. A–B, HIF2A (A) and HIF1A
(B) mRNA expression in SK-N-BE(2)c
and KCN-69n cells cultured at
normoxia (21% O2) or hypoxia (1% O2)
for 48 hours. C–F, IGF1R (C–D) and
INSR (E–F) mRNA expression in
clinical neuroblastoma material
consisting of 88 tumors (C and E) and
in SK-N-BE(2)c and KCN-69n cells
cultured at 21% or 1%O2 for 72 hours (D
and F). Relative mRNA was measured
by qRT-PCR; data, mean � SEM from
at least three independent
experiments. Statistical significance
was calculated using the Student t
test: � , P < 0.05; �� , P < 0.01;
��� , P < 0.001. No asterisk indicates
no significance.
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Figure 2.
HIF2A transcription is dependent on functional IGF1R and INSR. A–D, expression of HIF2A and HIF1A mRNA after downregulation of IGF1R (A–B) and INSR (C–D)
in SK-N-BE(2)c cells using siRNAs under normoxia (21% O2; A and C) or hypoxia (1% O2; B and D). Expression was normalized against siC within each
experiment, and statistical significance was calculated compared with siC. E–H, expression of HIF2A and HIF1A mRNA after treatment with the IGF1R inhibitor
NVP-AEW541 (E and G) or the INSR inhibitor HNMPA-(AM)3 (F and H) for 48 hours, as measured by qRT-PCR. Data, mean � SEM from three independent
experiments. Statistical significance was calculated using the Student t test: � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. No asterisk indicates no significance.
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resulted in an increase in phosphorylated Akt (at Ser473), indi-
cating persistent hypoxia-driven activation of the PI3K pathway
(Supplementary Fig. S2B). Pharmacologic inhibition of PI3K
activity with LY294002 nearly eradicated HIF2A mRNA expres-
sion (Fig. 3A), whereas HIF1A expression was unaffected or even
slightly upregulated (Fig. 3B). HIF2a protein expression was
abolished, whereas acute hypoxic induction of HIF1a was partly
prevented by LY294002 (Fig. 3C). To account for off-target effects
of LY294002, two additional PI3K inhibitors (GDC-0941 and PI-
103) were examined. Both inhibitors significantly downregulated
HIF2A mRNA expression (Fig. 3D).

PI3K inhibition affects HIF2-regulated gene expression and
in vivo tumor growth

To determine if HIF2A downregulation by PI3K inhibition has
biologic consequences, expressionof knownHIF2-driven genes in
neuroblastoma (such asVEGFA, SERPINB9, andDEC1; ref. 4)was
measured. VEGF-A mRNA and protein expression was induced
under physiologic and long-term hypoxic oxygen tensions, con-
ditions under whichHIF2a protein is the dominantHIFa subunit
(Figs. 3C and 4A and B). When PI3K activity, and hence HIF2a
expression, was blocked, VEGF-A protein and mRNA levels (Fig.
4A and B) and SERPINB9 andDEC1mRNA levels (Fig. 4C andD)
were drastically reduced.

A variety of extracellular stimuli are transduced by PI3K. In an
attempt to investigate the in vivo effects of PI3K inhibition on
tumor growth and vascularization without affecting systemic
PI3K signaling, SK-N-BE(2)c cells were pretreated with LY294002
prior to subcutaneous injection into mice. After a short period of

tumor growth (5 days), mice were sacrificed. Compared with
vehicle controls, the size and weight of tumors were negatively
affected by LY294002 (Fig. 4E). Tumors derived from LY294002-
treated cells were considerably less vascularized (Fig. 4F and G)
and expressed lower mRNA levels of the pro-angiogenic growth
factors VEGFA and PDGFB (Fig. 4H).

PI3K affects HIF2A mRNA expression independently of Akt
Akt is classically considered the most common mediator of

PI3K signaling, and neuroblastoma cells expressed all three
AKT genes (Supplementary Fig. S3A–S3C). GDC-0068 is a
highly selective pan-Akt inhibitor that is currently in clinical
trials (31). Inhibiting Akt using GDC-0068 had no effect
on HIF2A or HIF1A mRNA expression, either with short-term
(1 hour; Supplementary Fig. S3E) or long-term (48 hours; Fig.
5A) treatment. To verify inhibitor efficacy, we examined the
expression of phosphorylated PRAS40, a downstream target of
Akt. PRAS40 (pT246) levels were only slightly decreased (Sup-
plementary Fig. S3F and S3G); however, the effect of GDC-0068
treatment on PRAS40 has been reported to vary between cell
lines and tissue types (31). Because GDC-0068 is an ATP-
competitive inhibitor, pAkt levels increase despite decreased
downstream signaling (31). As expected, we observed inhibi-
tor-dependent pAkt (S473) upregulation at all time points and
oxygen tensions (Supplementary Fig. S3H). We next knocked
down Akt using siRNAs. Combined elimination of the three Akt
variants had no effect on HIF2A mRNA levels (Fig. 5B), despite
high knockdown efficiency (Supplementary Fig. S3D). PI3K can
exert its effects via several distinct pathways (e.g., BMX/ETK,
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Figure 3.
PI3K signaling is required for HIF2A expression. A and B, cells were treated with the PI3K inhibitor LY294002 for 4 or 48 hours at 21%, 5%, or 1% O2 and HIF2A
(A) and HIF1A (B) mRNA was quantified. C, HIF1a and HIF2a protein levels were determined by Western blotting after treatment of KCN-69n cells with
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S6K1, PDPK1, and SGK3; ref. 32, and reviewed in ref. 33), but
we could not attribute PI3K-dependent HIF2A/HIF2a expres-
sion to any of these signal transducers based on knockdown
studies.

mTORC1 regulates HIF1a protein translation only
Because mTORC1 has been implicated in HIF regulation, we

knocked down expression of the mTORC1-specific protein Rap-
tor. This hadno effect onHIF2AmRNA levels (Supplementary Fig.
S3I). In addition, neuroblastoma cells were treated with rapamy-
cin, a compound that inhibits mTORC1 by binding to, and
thereby interrupting, the kinase of the complex (reviewed in
ref. 34). HIF2a protein expression was virtually unaffected,
whereas HIF1a protein levels were downregulated at acute hyp-
oxia (Fig. 5C). Rapamycin treatment had no significant effect on
HIF2A or HIF1A transcription (Fig. 5D and E), the HIF2-driven
genes VEGFA, DEC1 or SERPINB9, or hypoxia-induced VEGF-A

protein expression (Figs. 5F and G; Supplementary Fig. S4A
and S4B).

PI3K-mediated regulation of HIF2A is exerted via mTORC2
HIF2a protein levels can be regulated via mTORC2 in 786-O

and RCC4 clear cell RCC cells (20, 35). Prolonged treatment of
SK-N-BE(2)c neuroblastoma cells with the mTORC1/mTORC2
inhibitor PP242 virtually eradicated HIF2a mRNA and protein
expression (Fig. 6A and B). Consistent with rapamycin data,
HIF1a protein expression was partly downregulated after 4
hours of treatment (Figs. 5C and 6C). Akt is phosphorylated
at Ser473 by mTORC2, which hence serves as a surrogate
marker of mTORC2 activity. PP242 treatment robustly damp-
ened pAkt (S473) expression under both short-term and long-
term conditions (Fig. 6C). Despite reduced HIF1a protein
expression following PP242 treatment, HIF1AmRNA was unaf-
fected (Fig. 6D); however, hypoxia-induced expression of HIF2
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target genes VEGFA, SERPINB9, and DEC1 was markedly
reduced in PP242-treated cells (Fig. 6E–G). Because this dif-
ferential dependence of HIF1a and HIF2a on mTORC1 and
mTORC2 has also been reported in RCC (20, 35), we sought to
establish if HIF2A is transcriptionally regulated in RCC-derived
cells. However, there was no significant hypoxic induction of
HIF2A mRNA expression in either 786-O or RCC-4 cells
(Fig. 6H and I), indicating that transcriptional regulation of
HIF2A might be cell-type dependent. RCC cell lines 786-O and
RCC-4 lack, or have mutant, expression of the von Hippel
Lindau (VHL) gene. Because the VHL protein targets HIFa
subunits for ubiquitination and degradation at normoxia,
RCC-4 cells stably transduced with a VHL-containing vector
were analyzed. As shown in Fig. 6I, restored VHL expression
rather decreased HIF2A transcription at hypoxia.

In order to further validate the effects of PP242 on HIF activa-
tion, we performed gene expression microarray analysis of SK-N-
BE(2)c cells treated with PP242 at hypoxia for 24, 48, or 72 hours.
As above, PP242 inhibited the hypoxic induction of HIF2A (Fig.
6J) but notHIF1A (Fig. 6M). Of note, the HIF target genes VEGFA
and DEC1 also had reduced hypoxic induction (Fig. 6K and L),
whichwasmost prominent at later time points (48 and 72hours),
implying that the early hypoxic response (over the first 24 hours)
is not substantially affected by PP242 treatment. In addition, a
transcriptional signature of hypoxic pathway activity (23) was
also reduced at later time points following PP242 treatment (Fig.
6N), and GSEA of genes ranked according to differential expres-
sion between 72-hour treatments with DMSO and PP242 dis-
played significant enrichment for genes involved in the hypoxic
response (Fig. 6O).
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The mTORC2 complex consists of several distinct proteins.
Because HIF2A expression is reduced by mTORC2 inhibition, we
overexpressed SIN1, anmTORC2-specific component. SIN1 over-
expression, and presumably increased mTORC2 activity, led to
significant increase inHIF2A transcription in neuroblastoma cells
(Fig. 7A).

HIF2AmRNAexpression is regulated byPI3K inneuroblastoma
PDX-derived cells

We recently reported a PDX model of neuroblastoma in
which patient tumor tissue is orthotopically implanted into
mice. Resulting tumors closely resemble clinical neuroblasto-
mas with widespread metastasis, including to bone marrow
(Fig. 7B; ref. 27). Tumors growing in mice were resected,
dissected, and grown in stem cell–promoting medium to allow
the cells to grow as neurospheres (27). Importantly, these cells
demonstrated hypoxia-induced HIF2A mRNA expression (Fig.
7C), similar to the classical SK-N-BE(2)c and KCN-69n neuro-
blastoma cell lines (Fig. 1A). Treatment of the PDX-derived
cells with LY294002 or PP242 under hypoxic conditions
resulted in downregulated HIF2A mRNA expression (Fig.
7C), further supporting a role for PI3K and mTORC2 signaling
in regulating HIF2 in human neuroblastomas.

Discussion
Because high HIF2a, but not HIF1a, protein expression is

associated with aggressive disease in neuroblastomas and several
other tumor types, identification of the pathways that specifically
regulate the expression and activity of different HIFa subunits
may provide novel avenues for therapeutic intervention. Unlike
canonical HIF posttranslational regulation, we show here that the
hypoxia-induced increase in HIF2a protein expression in neuro-
blastoma cells is, to a large extent, explained by transcriptional
upregulation of HIF2A. Interestingly, this mode of regulation
mimics the situation during normal SNS development where
HIF2a protein is transcriptionally regulated in immature neuro-
blasts and paraganglia cells (12, 36).

PI3K and/or mTOR inhibition severely attenuates neuroblas-
toma cell growth in vitro and in vivo (37–39). Here, treatment with
PI3K inhibitors diminishes basal- and hypoxia-induced HIF2A
expression. In addition, neuroblastoma cells pretreated with the
PI3K inhibitor LY294002 formed smaller and less vascularized
tumors in vivo. The results are in agreement with previous findings
where HIF2A knockdown in neuroblastoma cells gave rise to
smaller and more slow-growing tumors (4), and where high
HIF2a levels were detected in well-vascularized tumor regions,
whereas HIF1a expression significantly correlated negatively with
vascularization in human neuroblastoma (4, 8).

Having established that PI3K inhibition strongly reducedHIF2-
dependent gene transcription and tumor growth, we searched for

downstream regulatory events that might be more efficiently
targeted. Neither gene knockdown nor inhibition of Akt activity
affected HIF2A expression. Although PI3K primarily relays its
activity via Akt, there are previous demonstrations of Akt-inde-
pendent PI3K signaling in human tumors (40, 41). We conclude
that PI3K regulates HIF2a via Akt- and mTORC1-independent
mechanisms.

Little is known about upstream and downstream effects of
mTORC2, but it has been suggested to be directly or indirectly
activated by PI3K (42–46). VHL-deficient RCC cells that consti-
tutively express HIF2a have been shown to have differential
dependency on mTORC1 and mTORC2 for HIF1a and HIF2a
protein expression (20). We confirm these results in neuroblas-
toma. However, this effect is mediated by transcriptional down-
regulation of HIF2A, highlighting a fundamental difference
between the actions of mTORC1 on HIF1 and mTORC2 on HIF2
activities, respectively.

We have recently generated neuroblastoma PDXs (27) by
orthotopic implantation of tumor explants from high-risk neu-
roblastoma patients into immunocompromisedmice. The result-
ing tumors closely resemble clinical neuroblastomas, with wide-
spread metastasis to clinically relevant sites. Compared with
classical cell lines grown in vitro for decades that display genotypic
and phenotypic alterations, neuroblastoma PDXs retain the char-
acteristics of the tumors from which they were derived (27). In
addition, in vitro-culturedneuroblastomaPDX-derived cells retain
their tumorigenic and metastatic capacity upon orthotopic injec-
tion into mice (27). PDX-based tumor models are increasingly
being used in cancer research for drug screening and testing of
novel therapeutic targets due to being more predictive of clinical
outcome than cell line-derived xenografts (47). Here, we dem-
onstrate the feasibility of using short-term in vitro cultured neu-
roblastoma PDX-derived cells as a drug-testing model and show
thatHIF2AmRNAexpression is regulatedbyhypoxia via thePI3K/
mTORC2 pathway in these cells. Compared with treatment of
classical neuroblastoma cell lines with PI3K and mTOR inhibi-
tors, the HIF2A effects in PDX-derived cells were significant but
somewhat modest (Fig. 7B). These results may, however, be
explained by lowdrug penetrance into PDX-derived neurospheres
compared with monolayer cultures (unpublished observations).

In summary, IGFII-driven HIF2AmRNA expression in hypoxic
neuroblastoma cells is executed via IGF1R/INSR–PI3K–mTORC2
signaling, whereas HIF1a is regulated only at the protein level via
PI3K–mTORC1 (Fig. 7D). Because HIF2A expression seems to
require both IGF1R and INSR, it is tempting to speculate that the
subunits of these receptors form hybrid receptor complexes upon
IGFII ligand binding to exclusively direct signaling via the PI3K–
mTORC2 axis when hypoxic. Although we have not addressed
whether the changes inHIF2AmRNAexpression are due tomRNA
stability or de novo transcription, it has been reported that HIF
mRNA expression in hypoxic neuroblastoma cells is controlled by

(Continued.) SDHA was used as loading control. C, HIF1a and pAkt(S473) protein levels were determined by Western blotting after treatment of hypoxic SK-N-BE(2)c
cellswithPP242 for4or48hours.Actinwasusedas loadingcontrol.D–G,normoxicorhypoxicSK-N-BE(2)ccellswere treatedwithPP242 for48hoursandHIF1A (D),VEGFA
(E), SERPINB9 (F), and DEC1 (G) mRNA was measured. H–I, HIF2A mRNA levels in RCC-derived 786-0 (H) or RCC-4 (I) cells cultured at normoxia or hypoxia for
48 hours. Relative mRNA levels were determined using qRT-PCR and data are mean � SEM from three independent experiments. Statistical significance was
calculated using the Student t test: �P < 0.05. No asterisk indicates no significance. J–M, HIF2A (J), VEGFA (K), DEC1 (L), and HIF1A (M) mRNA expression obtained
from gene expression microarray analysis. N, measure of hypoxic pathway activity. Expression analysis was carried out on hypoxic SK-N-BE(2)c cells cultured for
24, 48, or 72 hours and treated with DMSO or PP242. Nx, normoxia (21% O2). O, GSEA of genes ranked according to differential expression between 72-hour
treatments with DMSO or PP242 from the gene expression microarray described in J–N. NES, normalized enrichment score; FDR, false discovery rate; FWER,
familywise error rate/Bonferroni correction.
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Figure 7.
Transcription of HIF2A is regulated via PI3K and mTORC2 in PDX-derived cells. A, neuroblastoma SK-N-BE(2)c cells were transfected with SIN1 full-length (FL)
vector at 21% O2. mRNA expression of SIN1 and HIF2A was compared with wild-type (WT) SK-N-BE(2)c cells. B, orthotopic PDXs visualized by MRI and
FDG-PET scans. C, PDX-derived neuroblastoma cells grown as neurospheres in vitro treated with the PI3K inhibitor LY294002 or the mTORC inhibitor PP242 for
48 hours at normoxia (21% O2) or hypoxia (1% O2), with treatments at T ¼ 0 hour and T ¼ 24 hours. Relative mRNA levels were measured using qRT-PCR; data,
mean � SEM from at least three independent experiments. Statistical significance was calculated using the Student t test: ��, P < 0.01; ���, P < 0.001. No
asterisk indicates no significance. D, schematic of the differential regulation of HIF1 and HIF2 in neuroblastoma. Transcription of HIF2A depends on INSR and IGF1R
(receptor) signaling and PI3K and mTORC2 activity. The actions of mTORC2 are possibly directly regulated by PI3K-mediated PIP3 production at the cell
membrane, and the effects of mTORC2 onHIF2A transcription may be direct or indirect. HIF1a protein expression is, on the other hand, more classically regulated at
the posttranslational level via PI3K–Akt–mTORC1 signaling.
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transcription rather than stabilization (48). These results and our
earlier findings (4, 12, 13, 49) suggest that HIF2 inhibition, either
directly or via the signaling pathways that activate HIF2a tran-
scription and translation, is an attractive target for the treatment of
aggressive neuroblastoma. Because the PI3K pathway appears to
be a major activator of HIF2 activity and PI3K/mTOR inhibitors
are in clinical use and late clinical trials (reviewed in ref. 50), it is
plausible that the effects of these inhibitors include inhibition of
HIF2 transcription and may be particularly useful drugs for
patients with neuroblastoma.
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